
Earned Schedule in Action

Earned Value Analysis - 11 Conference London, United Kingdom 12-17 June 2006

Kym Henderson
Education Director
PMI Sydney Australia Chapter

Kym.Henderson@froggy.com.au

EVM Schedule Indicators

EVM Schedule Indicators

- SV & SPI behave erratically for projects behind schedule
 - SPI improves and concludes at 1.00 at end of project
 - SV improves and concludes at \$0 variance at end of project
- Schedule indicators lose predictive ability nominally over the last third of the project

EVM Schedule Indicators

- Why does this happen?
 - SV = BCWP BCWS
 - SPI = BCWP / BCWS
- At planned completion BCWS = BAC
- At actual completion BCWP = BAC
- When actual completion > planned completion
 - SV = BAC BAC = \$000
 - SPI = BAC / BAC = 1.00

Regardless of lateness!!

Earned Schedule Concept

Earned Schedule Metrics

- Required measures
 - Performance Management Baseline (PMB) the time phased planned values (BCWS) from project start to completion
 - Earned Value (BCWP) the planned value which has been "earned"
 - Actual Time (AT) the actual time duration from the project beginning to the time at which project status is assessed
- All measures available from existing EVM data

Earned Schedule Metrics

◆ ES_{cum} is the:

Number of completed BCWS time increments BCWP exceeds + the fraction of the incomplete BCWS increment

◆ES_{cum} = C + I where:

C = number of time increments for BCWP \geq BCWS I = (BCWP - BCWS_C) / (BCWS_{C+1} - BCWS_C)

- ◆ ESperiod(n) = EScum(n) EScum(n-1) = ΔES_{cum}
- ATcum

AT = Actual Time (time now)

◆ ATperiod(n) = ATcum(n) – ATcum(n-1) = Δ AT_{cum} Δ AT_{cum} is normally equal to 1

Earned Schedule Indicators

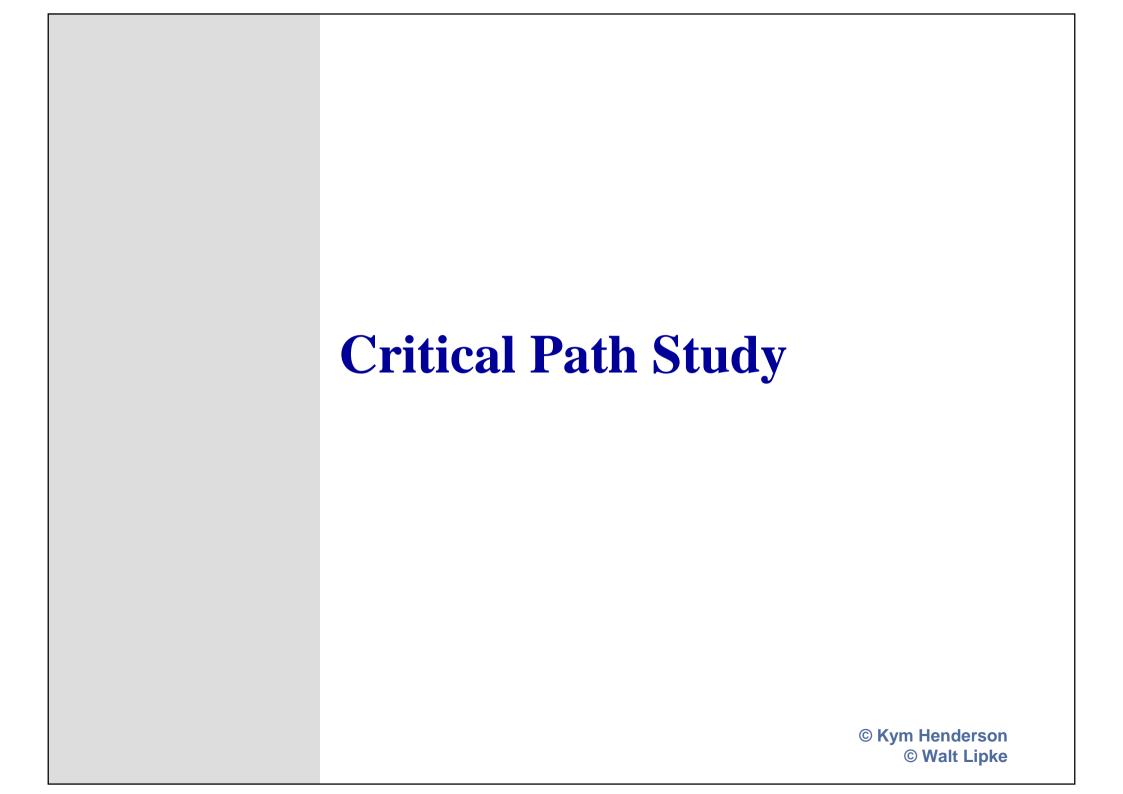
- Schedule Variance: SV(t)
 - Cumulative: $SV(t) = ES_{cum} AT_{cum}$
 - Period: $\Delta SV(t) = \Delta ES_{cum} \Delta AT_{cum}$
- Schedule Performance Index: SPI(t)
 - Cumulative: SPI(t) = ES_{cum} / AT_{cum}
 - Period: $\Delta SPI(t) = \Delta ES_{cum} / \Delta AT_{cum}$

Earned Schedule Indicators

• What happens to the ES indicators, SV(t) & SPI(t), when the Planned project Duration (PD) is exceeded (BCWS = BAC)?

They Still Work ... Correctly!!

- ◆ ES will be ≤ PD, while AT > PD
 - SV(t) will be negative (time behind schedule)
 - SPI(t) will be < 1.00


Reliable Values from Start to Finish!!

Earned Schedule Predictors

- ◆ Long time goal of EVM ... Prediction of total project duration from present schedule status
- Independent Estimate at Completion (time)
 - IEAC(t) = PD / SPI(t)
 - IEAC(t) = AT + (PD ES) / PF(t)
 where PF(t) is the Performance Factor (time)
 - Analogous to IEAC used to predict final cost
- Independent Estimated Completion Date (IECD)
 - IECD = Start Date + IEAC(t)

Earned Schedule Key Points

- ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI
- SV(t) and SPI(t)
 - Not constrained by BCWS calculation reference
 - Provide <u>duration</u> based measures of schedule performance
 - Valid for entire project, including early and late finish
- Facilitates integrated Cost/Schedule Management (using EVM with ES)

Critical Path Study Outline

- The Scheduling Challenge
- Case Study Project
 - The project
 - The EVM, Earned Schedule and Network Schedule approach
- Earned Schedule vs Critical Path predictors
- Real Schedule Management with Earned Schedule
 - Initial experience and observations
- Conclusion and Final Thoughts

The Scheduling Challenge

- A realistic project schedule is dependent on multiple, often complex factors including accurate:
 - Estimation of the tasks required,
 - Estimates of the task durations
 - Resources required to complete the identified tasks
- Identification and modeling of dependencies impacting the execution of the project
 - Task dependencies (e.g. F-S process flows)
 - "Dependent" Milestones (internal and external)
 - "Other logic"

The Scheduling Challenge

 From small projects into large projects and programs, scheduling requirements becomes exponentially more complex

Integration

- Of schedules between "master" and "subordinate" schedules
- Often across multiple tiers of
 - Activities and
 - Organisations
 contributing to the overall program of work
- Essential for producing a <u>useful</u> integrated master schedule

To further compound schedule complexity

- Once an initial schedule baseline has been established progress monitoring <u>inevitably</u> results in changes
 - Task and activity durations change because "actual performance" does not conform to plan
 - Additional <u>unforeseen</u> activities may need to be added
 - Logic changes as a result of corrective actions to contain slippages; and
 - Improved understanding of the work being undertaken
 - Other "planned changes" (Change Requests) also contribute to schedule modifications over time

Wouldn't it be nice

- To be able to explicitly declare "Schedule Reserve" in the project "schedule of record"
 - Protect committed key <u>milestone</u> delivery dates
- To have schedule macro level indicators and predictors
 - Ideally, derived separately from the network schedule!
 - Provides a means for comparison and validation of the measures and predictors provided by the network schedule
 - An <u>independent</u> predictor of project duration would be a particularly useful metric
 - "On time" completion of projects usually considered important
- Just like EVM practitioners have for cost
 - The potential offered by Earned Schedule

Case Study Project

- Commercial sector software development and enhancement project
 - Small scale: 10 week Planned Duration
 - Time critical: Needed to support launch of revenue generating marketing campaign
 - Cost budget: 100% labour costs
- Mixture of:
 - 3 tier client server development
 - Mainframe, Middleware, Workstation
 - 2 tier client server development
 - Mainframe to Workstation direct

The EVM and ES Approach

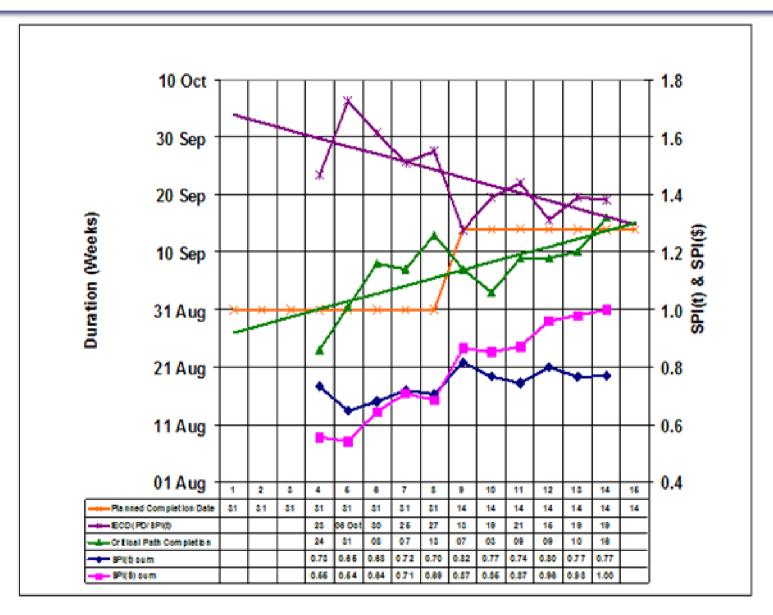
Microsoft Project 2002 schedule

- Resource loaded for time phased effort and cost estimation
- Control Account Work Package views developed in the schedule
- Actual Costs captured in SAP time recording system
 - Limited (actual) cost schedule integration
- Contingency (Management Reserve) managed outside the schedule
- Top level Planned Values cum "copied and pasted" into Excel EVM and ES template
 - High level of cost schedule integration achieved

Baseline Schedule: CAP and WP View (Excluding Risk)

ask Name	Baseline Work	Baseline Cost	Duration	Details	July	August	September
Project: ES Example #1 Inital Baseline Schedule	1,675 hrs	\$167,857	87 days	Cost	\$74,084	\$57,310	<u> </u>
				Cum. Cost	\$75,852	\$133,162	\$133,162
CAP 1 PROJECT MANAGEMENT	CAP 1 PROJECT MANAGEMENT 297 hrs \$38,610 44 days CAP 5 BUSINESS REQUIREMENTS 192 hrs \$0 34 days	\$38,610	44 days	Cost	\$14,139	\$17,680	
				Cum. Cost Cost	\$15,907	\$33,587	\$33,587
CAP 5 BUSINESS REQUIREMENTS		34 days	Cum. Cost	50	\$0	\$0	
CAP 7 SOLUTION DESIGN	160 hrs	\$16,567 9.5 day	0.5 days	Cost	\$6,367	φυ	Φι
CAL 7 SOLUTION DESIGN	100 1113	\$10,007	9.5 days	Cum. Cost	\$6,367	\$6,367	\$6,367
CAP 8 BUILD & UNIT TEST 720 hr	720 hrs	\$77,760	30.25 days	Cost	\$45,128	\$13,760	1
2,0 120,22 3 2,00 120 1	1 0 DOIED & SINT 1201 1201		Cum. Cost	\$45,128	\$58,888	\$58,888	
01 Mainframe Stream 1	01 Mainframe Stream 1 192 hrs \$24,960 19.38 day	19.38 days	Cost	\$12,168			
		9.26 2.	Cum. Cost	\$12,168	.	\$12,168	
02 Mainframe Stream 2	64 hrs	\$6,400	10 days	Cost	\$4,240	۵	
				Cum. Cost	\$4,240	à	à
03 Frontend	03 Frontend 104 hrs \$10,400 19 day	19 days	Cost Cum. Cost	\$7,920	<u>.</u>		
04.0	40 6	64.000	6.25 days	Cost	\$7,920	\$9,360	\$9,360
04 Connect	40 hrs	\$4,000		Cum. Cost	\$4,000 \$4,000	\$4,000	\$4,000
05 Database	8 hrs	\$800	1.25 days	Cost	\$800	å	\$4,000
00 Database	0 1113	\$600		Cum. Cost	\$800	\$800	\$800
06 Middle Tier	208 hrs	\$20,800	25 days	Cost	\$12,320	\$6,880	
		,,,,,,,		Cum. Cost	\$12,320	\$19,200	\$19,200
07 Reporting		21.5 days	Cost	\$3,680	\$5,440		
		<u> </u>	Cum. Cost	\$3,680	\$9,120	\$9,120	
CAP 9 SYSTEM TEST	104 hrs	\$13,520	29.06 days	Cost	\$8,450	À	
010/01114	45 hrs \$5,040 3.75 da		Cum. Cost Cost	\$8,450	\$13,520	\$13,520	
CAP 10 UAT		\$5,040	3.75 days	Cum. Cost		\$5,040 \$5,040	\$5,040
CAP 11 PRODUCTION IMPLEMENTATION	96 hrs	\$10,260	11.81 days	Cost		\$10,260	6
				Cum. Cost		\$10,260	*************************************

Schedule Management


• Weekly schedule updates from week 3 focusing on:

- Accurate task level percentage work completion updates
- The project level percentage work completion (cumulative) calculated by Microsoft Project
 - Percentage work complete transferred to the EVM and ES template to derive the progressive Earned Value (cumulative) measures

Schedule review focusing on critical path analysis

- Schedule updates occurred as needed with
- Revised estimates of task duration and
- Changes to network schedule logic particularly when needed to facilitate schedule based corrective action
- Actual costs entered into the EVM template as they became available (~ weekly)

An Integrated Schedule Analysis Chart Critical Path, IECD, SPI(t) and SPI(\$) on one page

Schedule Analysis

Initial expectation

 The critical path predicted completion date would be more pessimistic than the IECD

In fact

- The ES IECD trend line depicted a "late finish" project with improving schedule performance
- The critical path predicted completion dates showed an "early finish project" with deteriorating schedule performance

Became the "critical question" in Week 8

- ES IECD improvement trend reversed
- Continued deterioration in the critical path predicted completion dates

Schedule Analysis Result

◆ IECD the more credible predictor in this circumstance

- Work was not being accomplished at the rate planned
- No adverse contribution by critical path factors
 - e.g. Externally imposed delays caused by "dependent milestone"
- Two weeks schedule delay communicated to management
 - Very late delay of schedule slippage a very sensitive issue
- Corrective action was immediately implemented
 - Resulted in two weeks progress in one week based on IECD improvement in week 9
 - Project substantively delivered to the revised delivery date

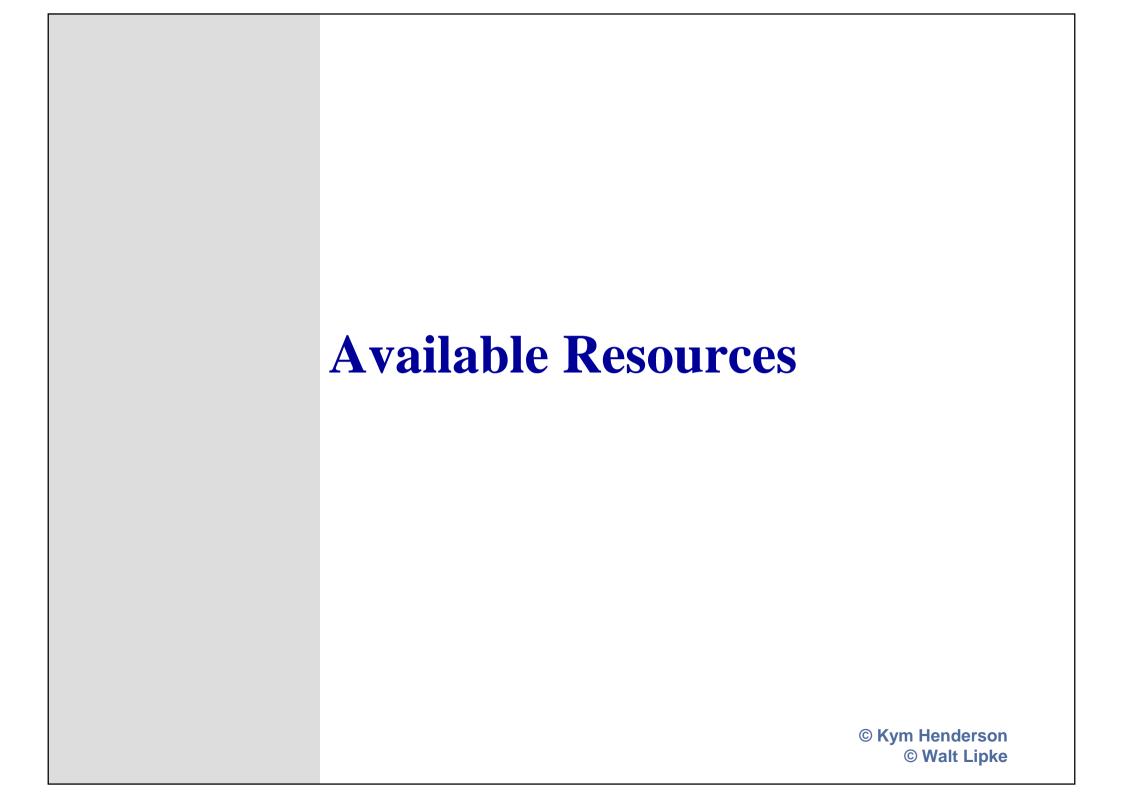
The IECD vs Critical Path Predictors

- Network schedule updates do not usually factor past (critical path) task performance into the future
 - Generally concentrate on the <u>current</u> time window
 - Task updates
 - Corrective action to try and contain slippages
 - Critical path predicted completion date is not usually calibrated by past actual schedule performance
- The ES IECD
 - Cannot directly take into account critical path information
 - BUT does calibrate the prediction based on historic schedule performance as reflected in the SPI(t)

Further Observations

- Much has been written about the consequences of not achieving work at the EVM rate planned
 - At very least, incomplete work needs to be rescheduled ...
 - Immediate critical vs non critical path implication requires detailed analysis of the network schedule
 - Sustained improvement in schedule performance is a difficult challenge
 - SPI(t) remained in the .7 to .8 band for the entire project!
 - In spite of the corrective action and recovery effort
 - Any task delayed <u>eventually</u> becomes critical path if not completed!
- SPI(t) a very useful indicator of schedule performance
 - Especially later in the project when SPI(\$) resolving to 1.0

Questions of Scale


- We know that ES is scalable as is EVM
 - Issues of scale did not arise due to small size of the project
- Detailed analysis of the ES metrics is required
 - The same as EVM for cost
 - The "masking" or "washout" effect of negative and positive ES variances at the detailed level can be an issue
 - The same as EVM for cost
- Apply Earned Schedule to the Control Accounts and Work Packages on the critical path
 - And "near" critical path activities
- Earned Schedule augments network schedule analysis – it doesn't replace it
 - Just as EVM doesn't replace a bottom up ETC and EAC

Real Schedule Management with Earned Schedule

- ES is of considerable benefit in analysing and managing schedule performance
- The "time critical" dichotomy of working to "optimistic" predicted task completions and setting and reporting realistic completion dates was avoided
 - ES metrics provided an <u>independent</u> means of sanity checking the critical path predicted completion date
 - Prior to communicating overall schedule status to management
- ES focused much more attention onto the network schedule than using EVM alone

Final Thoughts

- ES is expected be of considerable value to the schedule management for large scale projects and programs
 - Exponential increase in the network scheduling complexities which is both
 - Unavoidable and essential on those programs which means
 - The need and benefits of independent techniques to sanity check schedules of such complexity is much greater
- ES is anticipated to become the "bridge" between EVM and the Network Schedule

Publications

- 1. "Schedule is Different," *The Measurable News*, March & Summer 2003 [Walt Lipke]
- 2. "Earned Schedule: A Breakthrough Extension to Earned Value Theory? A Retrospective Analysis of Real Project Data," <u>The Measurable News</u>, Summer 2003 [Kym Henderson]
- 3. "Further Developments in Earned Schedule," *The Measurable News*, Spring 2004 [Kym Henderson]
- 4. "Connecting Earned Value to the Schedule," *The Measurable News*, Winter 2004 [Walt Lipke]
- 5. "Earned Schedule in Action," *The Measurable News*, Spring 2005 [Kym Henderson]
- 6. "Not Your Father's Earned Value," *Projects A Work*, February 2005 [Ray Stratton]

http://sydney.pmichapters-australia.org.au/

Click "Education," then "Presentations and Papers" for .pdf copies http://www.earnedschedule.com

Presentations

- Earned Schedule An Emerging Practice, 16th IIPM Conference, November 2004 [Walt Lipke, Kym Henderson]
- 2. <u>Schedule Analysis and Predictive Techniques Using Earned Schedule</u>, 16th IIPM Conference, November 2004 [Walt Lipke, Kym Henderson, Eleanor Haupt]
- 3. <u>Earned Schedule an Extension to EVM Theory</u>, EVA-10 Conference (London), May 2005 [Walt Lipke, Kym Henderson]
- 4. <u>Forecasting Project Schedule Completion by Using Earned Value Metrics</u>, EVM Training at Ghent University (Belgium), January 2005 [Stephan Vandevoorde]

http://sydney.pmichapters-australia.org.au/

Click "Education," then "Presentations and Papers" for .pdf copies http://www.earnedschedule.com

Presentations

- 5. New Concept in Earned Value Earned Schedule, PMI Southeast Regional Conference, June 2005 [Robert Handshuh]
- 6. <u>Forecasting Project Schedule Completion by Using Earned Value Metrics</u>, Early Warning Signals Congress (Belgium), June 2005 [Stephan Vandevoorde, Dr. Mario Vanhoucke]

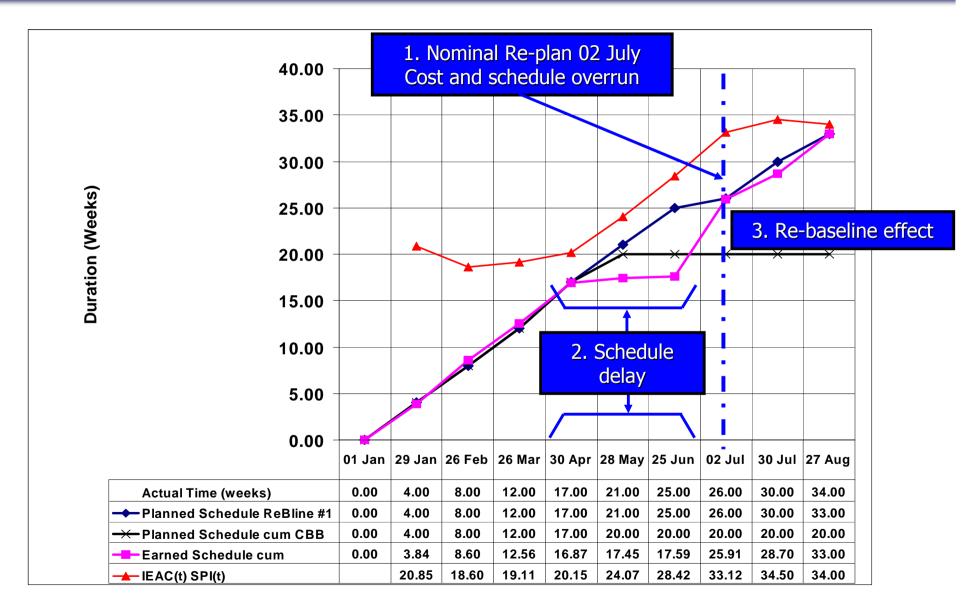
http://sydney.pmichapters-australia.org.au/

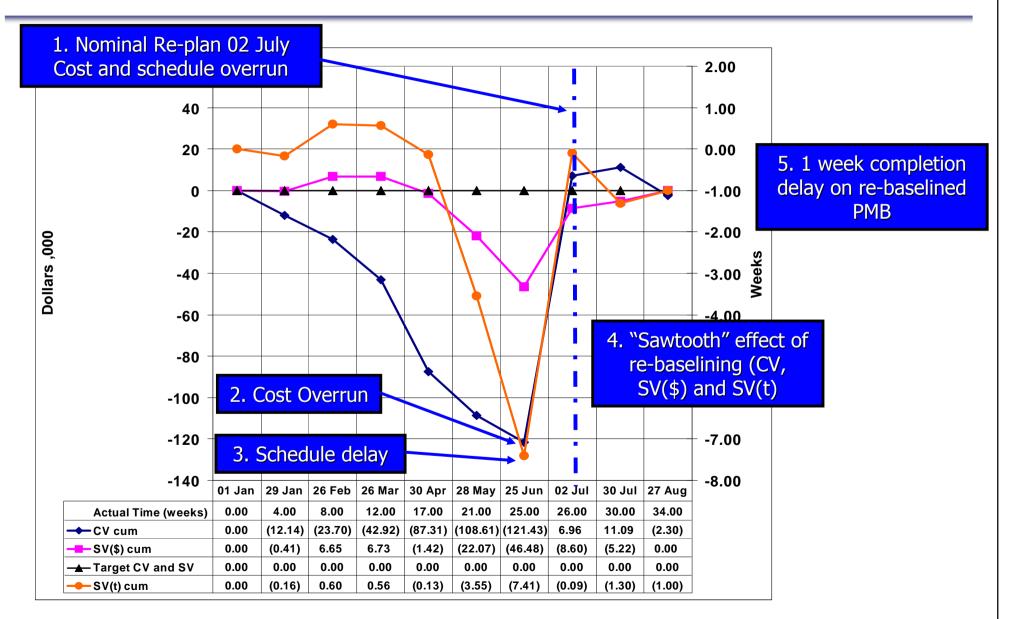
Click "Education," then "Presentations and Papers" for .pdf copies http://www.earnedschedule.com

Calculator & Analysis Tools

- Freely provided upon email request
 - Application assistance if needed
- Please respect copyright ©
- Feedback requested
 - Improvement / Enhancement suggestions
 - Your assessment of value to Project Managers
 - Disclosure of application and results (with organization permission and/or anonymously)

Contact Information


Walt Lipke		Kym Henderson
waltlipke@cox.net	Email	kym.henderson@froggy.com.au
(405) 364-1594	Phone	61 414 428 537


ES and Re-Baselining

- ES indicators are affected by re-baselining
 - Behaviour of SV(t) and SPI(t) is analogous to CV and CPI
 - See examples
- PMB change affects schedule prediction similarly to cost
- Earned Schedule brings attention to the potential schedule impact of a declared "cost only" change

Earned Schedule – Re-Baseline Example Real project data – nominal re-baseline

Earned Schedule – Re-Baseline Example CV, SV(\$) and SV(t)

